June 16, 2021

Contributions to Variation in Fly Ball Distances (FanGraphs)

Back in early 2013, I wrote a guest article for Baseball Prospectus entitled “How Far Did That Fly Ball Travel?” In that article, I posed a seemingly simple question: Can we predict the landing point of a fly ball just after it leaves the bat? A more precise way to ask the question is as follows: Suppose the velocity vector of a fly ball just after leaving the bat is known, so that the exit velocity, launch angle, and spray angle are all known. How well does that information determine the landing point? I then proceeded to investigate the question, at least for home runs, with the aid of HITf/x data for the initial velocity vector and the ESPN Home Run Tracker for the landing point and hang time. Using a technique described in the article, that information was used along with a trajectory model to reconstruct the full trajectory and extrapolate it to ground level to determine the fly ball distance. The answer to the question was immediately obvious: The initial velocity vector poorly determines the fly ball distance.

This conclusion led naturally to the next question: Why? One obvious reason is variation in atmospheric conditions, especially wind. However, the data…

Read “Contributions to Variation in Fly Ball Distances” at FanGraphs